Projective Connections and the Algebra of Densities
نویسنده
چکیده
Projective connections first appeared in Cartan’s papers in the 1920’s. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Laplace-type operator on functions using a Thomas projective connection and a symmetric contravariant tensor of rank 2 (‘upper metric’).
منابع مشابه
Projective Connections and Schwarzian Derivatives for Supermanifolds, and Batalin-vilkovisky Operators
We extend the notion of a Thomas projective connection (a projective equivalence class of linear connections) for supermanifolds. As a by-product, we arrive at a generalisation of the multidimensional Schwarzian derivative for the super case which was previously unknown. This is combined with our previous construction of a Laplacian on the algebra of densities for a projectively connected manif...
متن کاملPositive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
متن کاملProjective Geometry with Clifford Algebra*
Projective geometry is formulated in the language of geometric algebra, a unified mathematical language based on Clifford algebra. This closes the gap between algebraic and synthetic approaches to projective geometry and facilitates connections with the rest of mathematics.
متن کاملOn two generalizations of semi-projective modules: SGQ-projective and $pi$-semi-projective
Let $R$ be a ring and $M$ a right $R$-module with $S=End_R(M)$. A module $M$ is called semi-projective if for any epimorphism $f:Mrightarrow N$, where $N$ is a submodule of $M$, and for any homomorphism $g: Mrightarrow N$, there exists $h:Mrightarrow M$ such that $fh=g$. In this paper, we study SGQ-projective and $pi$-semi-projective modules as two generalizations of semi-projective modules. A ...
متن کامل